Practice

The Binomial Theorem

Expand each binomial.

1.
$$(x + 2)^4$$

2.
$$(a + 2)^7$$

3.
$$(x + y)^7$$

4.
$$(d-2)^9$$

5.
$$(2x-3)^8$$

6.
$$(x-1)^9$$

7.
$$(2x^2 - 2y^2)^6$$

8.
$$(x^5 + 2y)^7$$

9.
$$(n-3)^3$$

10.
$$(2n + 2)^4$$

11.
$$(n-6)^5$$

12.
$$(n-1)^6$$

13.
$$(2a + 2)^3$$

14.
$$(x^2 - y^2)^4$$

15.
$$(2x + 3y)^5$$

16.
$$(2x^2 + y^2)^6$$

17.
$$(x^2 - y^2)^3$$

18.
$$(2b + c)^4$$

19.
$$(3m-2n)^5$$

20.
$$(x^3 - y^4)^6$$

Find the specified term of each binomial expansion.

21. third term of
$$(x + 3)^{12}$$

22. second term of
$$(x + 3)^9$$

23. twelfth term of
$$(2 + x)^{11}$$

24. third term of
$$(x-2)^{12}$$

25. eighth term of
$$(x - 2y)^{15}$$

26. seventh term of
$$(x-2y)^6$$

27. fifth term of
$$(x^2 + y^2)^{13}$$

28. fourth term of
$$(x^2 - 2y)^{11}$$

29. The term $126c^4d^5$ appears in the expansion of $(c+d)^n$. What is n?

30. The coefficient of the second term in the expansion of $(r+s)^n$ is 7. Find the value of n, and write the complete term.

State the number of terms in each expansion and give the first two terms.

31.
$$(d+e)^{12}$$

32.
$$(x-y)^{15}$$

33.
$$(2a + b)^5$$

34.
$$(x - 3y)^7$$

35.
$$(4-2x)^8$$

36.
$$(x^2 + y)^6$$

37. The side of a number cube is x + 4 units long. Write a binomial for the volume of the number cube. Use the Binomial Theorem to expand and rewrite the expression in standard form.